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INTRODUCTION
Future operating theaters will be equipped with robots

to perform various surgical tasks including, for example,
endoscope control (Fig. 1b). Fully automated surgery is
likely to be part of the distant future [1]. However, human-
in-the-loop supervisory control architectures where the
surgeon selects from several autonomous sequences is
already being successfully applied in preclinical tests,
e.g. autonomous bowel anastomoses was recently carried
out in animals [2]. Inserting an endoscope into a trocar
or introducer is a key step for every keyhole surgical
procedure – hereafter we will only refer to this device
as a “trocar”. Our goal is to develop a controller for
autonomous trocar docking.

Autonomous trocar docking is a version of the peg-in-
hole problem. Extensive work in the robotics literature
addresses this problem, e.g. [3], [4], [5]. The peg-in-
hole problem has been widely studied in the context of
assembly [6] where, typically, the hole is considered static
and rigid to interaction. In our case, however, the trocar is
not fixed and responds to interaction. Within the scope of
surgical robotics, a recent article addressed autonomous
trocar docking for retinal surgery [7]. A vision-based
system tracks the trocar and aligns the robot with the
estimated pose prior to insertion. This work assumes the
robot accurately aligns with the estimated pose, prior
to insertion, and does not utilize contact information.
In contrast, we consider procedures on a larger scale,
e.g. endoscopic lumbar discectomy/decompression, and
cholecystectomy. For these cases, often, surgeons will
utilize contact between the endoscope and trocar in order
to complete the insertion successfully. To the best of our
knowledge, we have not found literature that explores this
particular generalization of the problem directly.

Our primary contribution in this work is an optimal
control formulation for automated trocar docking. We
use a nonlinear optimization program to model the task,
minimizing a cost function subject to constraints to find
optimal joint configurations. The controller incorporates
a geometric model for insertion and a force-feedback
(FF) term to ensure patient safety by preventing ex-
cessive interaction forces with the trocar. Experiments,
demonstrated on a real hardware lab setup, validate the
approach (Fig. 1b). Our method successfully achieves
trocar insertion on our real robot lab setup, and simulation
trials demonstrate its ability to reduce interaction forces.
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Fig. 1: A robot arm equipped with an endoscope. (a)
Robot simulation, the green box is a simulated trocar that
responds to interaction, and (b) hardware realization.

MATERIALS AND METHODS
Optimal Control Approach

We formulate a nonlinear controller, given by
𝑞∗ = arg min

𝑞

∑︁
𝑖

𝑤𝑖𝑐𝑖 (𝑞; 𝑝) subject to 𝑞 ∈ Q (1)

where 𝑞∈R𝑛 is the 𝑛 degree of freedom robot joint position,
0≤𝑐𝑖 (·)∈R is a cost term for a sub-task with a corresponding
scalar weight 0<𝑤𝑖∈R, 𝑝∈R𝑛𝑝 is an arbitrary array of
parameters from sensing data (a hat indicates the value is
measured by a sensor), e.g. trocar pose that is assumed
known, and Q is the space of feasible joint states (i.e.
joint position/velocity limits). Motion is generated by first
stacking sensing data into 𝑝, then solving (1), that results in
a reference configuration 𝑞∗ to which the robot is controlled.

The terms 𝑐𝑖 for 𝑖 = 1:5 model the tasks: (i) move the end-
effector tip 𝑒(𝑞) towards the trocar insertion axis given by
the direction vector 𝑔𝑎, modeled by 𝑐1 = ∥𝑒(𝑞) − 𝑛(𝑔𝑎)∥2

(𝑛(·) is the nearest point on the line 𝑔𝑎), (ii) move end-
effector towards a goal position 𝑔𝑝 , modeled by 𝑐2 =

∥𝑒(𝑞) − 𝑔𝑝 ∥2, (iii) align the endoscope optical axis 𝑎(𝑞)
with the given by 𝑐3 = ∥𝑎(𝑞) − 𝑔𝑎∥2, (iv) minimize joint
velocity modeled by 𝑐4 = ∥𝑞 − 𝑞𝑝𝑟𝑒𝑣 ∥2, and (v) use FF
measured from the robot joint external torques to reduce
interaction forces, modeled by 𝑐5 = ∥𝑒(𝑞) − 𝑟 ∥ such that 𝑟
is found by an admittance controller based on the external
torques measured at the joints.

We implement (1) using the OpTaS library [8], and
use an sequential optimization programming approach as
the solver. It is possible to linearize the problem about
the current robot configuration 𝑞𝑐, enabling us to use a
quadratic programming solver (typically faster). However,
we observed that the nonlinear solver was able to reliably



Fig. 2: Comparison of ∥ 𝑓𝑒𝑥𝑡 ∥ (measured in Newtons)
over time, from simulation trials, with/without FF. Color
indicates a trial.
converge within 2ms - well within a sampling frequency
amenable for online control.

Simulation

We employ the PyBullet [9] simulator for reliable contact
modeling [10], a KUKA LBR Med robot arm with an
endoscope attachment (Fig. 1a), and a trocar represented
by a cloth-like mesh attached to a holed box. To simulate
real-world conditions, we introduce (Gaussian) noise to the
trocar pose retrieval.

Hardware realization

Our hardware setup, depicted in Fig. 1b, consists of a
custom mount with an endoscope and a ZEDm (Stereolabs,
USA) camera for state estimation attached to the robot end-
effector. The endoscope tip position relative to the robot
end-effector is determined through CAD model measure-
ments, while the camera pose is estimated using eye-in-hand
calibration (i.e. wiki.ros.org/handeye). Although the camera
can capture depth images, a single RGB image stream is
used. At this stage a trocar, a trocar with an attached ArUco
marker is placed in a position visible to the camera. In the
current setup, the trocar is positioned in a fixed location.
The setup has successfully completed the insertion task
in multiple trials. Future work will explore removing the
visible marker requirement, as discussed later.

RESULTS

In simulation, we compare with/without a FF term to indi-
cate the method leads to reduced interactions with the trocar.
The interaction forces �̂�𝑒𝑥𝑡∈R3 at the endoscope tip are
estimated using �̂�𝑒𝑥𝑡=𝐽𝑙𝑖𝑛 (𝑞𝑐)−𝑇 �̂�𝑒𝑥𝑡 where 𝐽𝑙𝑖𝑛 (·)∈R3×7

is the linear geometric Jacobian matrix, and �̂�𝑒𝑥𝑡∈R7 are
external torques measured at the joints.

For three trials with/without FF, the distributions of
∥ 𝑓𝑒𝑥𝑡 ∥ are shown in Fig. 2. Visually, it is apparent that the
interaction forces are reduced when incorporating the FF
into the controller. Note, the time required to complete the
task is longer when incorporating FF. These results suggest
a reduction in ∥ 𝑓𝑒𝑥𝑡 ∥, that is quantified by the performance
metric 𝑀 = 1

𝑇

∫ 𝑇

0 ∥ 𝑓𝑒𝑥𝑡 ∥ 𝑑𝑡, 𝑇 is the completion time. The
metric 𝑀 is the normalized force integral; lower values
indicate higher performance. For each trial we compute
𝑀 and take the average. The results without and with FF
respectively is 21.4 ± 9.1N and 3.4 ± 1.6N.

DISCUSSION
We successfully developed and implemented an au-

tonomous trocar docking system in a realistic lab setup.
Comparisons indicate that incorporating FF can improve
safety by reducing interaction forces.

The hardware realization validates our pipeline but has
limitations. State estimation relies on marker visibility, we
intend to explore a state estimator trained on synthetic,
markerless data. Our current controller focuses on linear
interaction forces during the initial stage of the task, before
insertion, as rotational forces are not significant at this stage.
However, we acknowledge that rotational moments are
expected, especially after partial trocar insertion. In future
iterations, we will incorporate these to ensure compliance
in the full 6D task space. Additionally, our next hardware
setup will assume a compliant trocar.

We will also investigate kinesthetic teaching to elimi-
nate the need for extensive parameter tuning. However,
decoupling interaction forces between the trocar and the
demonstrator might pose challenges. Teleoperation-based
demonstrations are an alternative, but collecting sufficient
training data could be laborious due to the small insertion
port (approximately 7mm) and potential view-point issues.
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